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1 Introduction

1.1 Why study solid state physics?

Solid State Physics is the study of solids (especially crystalline solids) using combinations of techniques
originally from crystallography, metallurgy and engineering, along with the theoretical tools of quantum
mechanics, statistical mechanics, thermodynamics, and electromagnetism. The goal is to try to understand
how the macroscopic properties of solids emerge from their microscopic, atomic scale properties. Therefore,
Solid State Physics forms the theoretical basis of Materials Science. It also has direct applications to tech-
nology, you probably have heard about “solid state hard-drives in computers”, in fact all of electronics is
due to solid state physics! Semiconductors are perhaps the biggest gift of this subject. “Solid State Physics”
is the largest branch of Materials Science, a very popular field of current physics research.

Once we have a basic understanding of the crystalline solids at their very microscopic level, that is how
they are structured geometrically, we can later on derive many physical properties easily. Therefore, let us
start with crystal structure.

2 Crystal Structure

Lattice: a lattice is a geometrical object, it is a regular repeated three-dimensional arrangement of points
(Fig. 1) that extends up to infinity in all directions.

Figure 1: A piece of a lattice: repeated arrangement of points in 3D. A lattice of course is infinite in size
and therefore, cannot be drawn entirely on this piece of paper!

If you stand on one of those points, the surrounding always appear to be identical. Question: Would it
really be true if the lattice was not infinite?
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2 CRYSTAL STRUCTURE

Such ordered structures are everywhere in nature, for example the hexagonal lattice pattern of a bee-hive
(Fig. 2).

Figure 2: A typical beehive surface structure.

Question: Can you guess why do bees like particularly this hexagonal shape? Why not squares, or
triangles?

Crystal: a crystal is a physical object unlike the mathematical lattice. A crystal or crystalline solid is a
solid material whose constituents (atoms, molecules, or ions) are arranged in a lattice structure.

Of course real crystals won’t be infinite in size, but consider the distance between two atoms ∼ 10−10

meters, and consider the size of a piece of a crystal several centimeters (∼ 10−2 meters), so, that’s like a
football on the surface of earth, isn’t it effectively infinite? But, we have to be careful, we should be always
considering the bulk, the interior of the crystal. The infinity (large) approximation will fail if we considering
a location very close to the edge of a real crystal.

Experimental evidence of crystals: originally mineralogists found that the “index numbers“ (will be
defined later) that define the orientations of the faces of a crystal are exact integers! This discovery was
supported by the 1912 x-ray diffraction of crystals, when Max von Laue developed the theory of x-ray
diffraction by a periodic array, and his colleagues verified his theoretical results through diffraction experi-
ments. The x-ray diffraction experiment decisively proved that crystals at their microscopic level, are built
of periodic array of atoms or molecules. Question: can you guess why x-ray was used for this diffraction
experiment and not other kind of light wave? For example, why not microwave or ultraviolet light?

Basis: a basis is either a single atom or a packed group of atoms (molecule) that when attached to each
point of a geometrical (mathematical) lattice, produces the physical crystal. Symbolically:

LATTICE+ BASIS = CRYSTAL STRUCTURE (1)

Imagine the “H 32” classroom tile-floor is a mathematical lattice, if you put a frog (all identical frogs) on
each corner, the physical structure consisting of those frogs, would be a crystal structure. That frog is your
“basis”. Instead of a frog, if you placed a “chalk and a duster” at every corner, provided all chalk-duster
pairs are identical, that would still produce another crystal structure, this time your basis would be that
chalk-duster pair. This was just a 2D example though, crystals are 3D structures.

Therefore, we can redefine crystal as the infinite repetition of a basis. The set of mathematical points
to which a basis is attached, is called a “lattice”.
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2 CRYSTAL STRUCTURE

Lattice Translation Vectors Just like to span the whole normal 3D space, we need 3 unit vectors (̂i, ĵ,

k̂), we can construct any vector in space using these 3, all we have to do is multiply each of them by desired

random real numbers (+ve or −ve) and combine them, e.g., 0.5̂i − 2.3ĵ + 1000.4k̂ will be a vector, or any
combination, and we can get a vector with any magnitude and direction. Similarly, to span the 3D space
space of lattice, we will need 3 such (linearly) independent vectors, they may or may not be orthogonal, but
that’s OK as long as they are linearly independent, we can build the whole lattice space using them. But
what’s the catch here? Can we really build any vector with them? Remember, a lattice space is a discrete
space, a space of discrete points! You cannot build any arbitrary vector here! The (position) vector must
start on one of the lattice points and must end on another lattice point, how will you achieve that?

Assume that we got 3 such vectors, a⃗1, a⃗2, and a⃗3, the condition would be: if we start from a lattice
point represented by a position vector r⃗, and would want to jump to another lattice point represented by r⃗′,
these two points must be related as:

r⃗′ = r⃗ + u1a⃗1 + u2a⃗2 + u3a⃗3 (2)

where u1, u2, u3 must be all integers (+ve or -ve). Just like the normal continuous 3D space, if you
choose all possible (infinite of them!) random integer values of these u’s, you can fill the whole discrete
space of lattice, in other words, r′ can construct the whole lattice if you supply all possible integer values
to those u’s. Those a⃗’s are such that no lattice points will be missed if you choose all possible u integer values.

Unit Cell: a unit cell is a like a building block of a lattice, that when repeated infinitely, builds the whole
lattice. It is the cell formed by 3 vectors a⃗1, a⃗2, a⃗3 that span a lattice space. There are two types of unit
cells:

1. primitive unit cell: a primitive unit cell or just a primitive cell is the smallest possible unit cell. It
must contain only one lattice point (the meaning of that will be clear soon).

2. conventional unit cell: a conventional cell may contain more than one lattice points. It is used
because usually a primitive cell may not display all the symmetries of the lattice, so we choose a unit
cell that does.

The lattice point counting rule: when we say a primitive cell contains exactly one lattice point, what
do we really mean? What is the counting rule of 1, 2, 3 etc lattice points contained in a cell? The general
formula (in 3D) of total number of lattice points (N) contained within a unit cell is given by:

N = Ninternal +
Ncorner

8
+

Nedge

4
+

Nface

2
(3)

where the meanings of various N ’s in the right side of Eq. (3) are apparent from their names in the
suffixes. For example, Ncorner is the number of points located at the corners of a cell, in 3D, such a corner-
point is shared by 8 cells, therefore, for one such cell, we must consider only 1/8th of one such corner-point.
If a point was located at one of the faces of a 3D cell (imagine a cube), it is shared by just an adjacent cell,
therefore, only 2 cells share such a face-point, therefore, such a point must be counted as half for a single
cell. Question: can you explain the other two kinds of points?

Lattice Translation Vector: the primitive translation vectors a⃗1, a⃗2, and a⃗3 that spans the volume
of a primitive cell of a lattice can be used to construct a special vector on that lattice: T⃗ , called a lattice
translation vector, defined as (Eq. (4)):

T⃗ = u1a⃗1 + u2a⃗2 + u3a⃗3 (4)

this is the vector that can take you to every possible lattice point if you supply the desired integers: u1,
u2, u3. This vector operation also leaves the lattice invariant, meaning: if you are standing on a lattice point
located by a position vector r⃗, and I apply a translation on you by T⃗ , that is I move you to a new location
r⃗′ such that:
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r⃗′ = r⃗ + T⃗ (5)

you will not be able to tell if are still standing at the old location r⃗ or the new location r⃗′ by looking
around you, everything will appear the same! That means, the operation T⃗ is a symmetry of the lattice, a
translation symmetry to be precise.

The volume of a primitive cell is given by:

Vp = |a⃗1 · (⃗a2 × a⃗3)| (6)

this is just a consequence of simple vector algebra, remember the formula of a volume enclosed by 3
vectors? It’s just that.

Wigner-Seitz cell: it is easy to check that primitive cells are not unique, for a given lattice, you can
come up with different shapes of primitive cells, examples are shown in Fig. (3)

Figure 3: Here we see 4 kinds of cells, defined by the vector pairs: (⃗a1, a⃗2), (⃗a
′
1, a⃗

′
2), (⃗a

′′
1 , a⃗

′′
2), and finally

(⃗a′′′1 , a⃗′′′2 ), out of these only the first 3 are primitive cells and the corresponding vector pairs are primitive
translation vectors. The last one, that is the vectors a⃗′′1 and a⃗′′2 , are not primitive translation vectors because

you cannot form that translation vector T⃗ using these two, can you?

but there is a standard and unique way of finding a special kind of primitive cell called a “Wigner-Seitz”
cell. Let us define it through construction:

• Step-1: choose a lattice point (any).

• Step-2: draw lines to all its nearest neighbors.

• Step-3: draw perpendicularly bisecting lines (planes in 3D, lines in 2D) to the above drawn lines.

area (volume in 3D, area in 2D) enclosed by those perpendicular bisectors will be aWigner-Seitz primitive
cell (a 2D example in Fig. (4)). Question: check that it does contain only one lattice point using
the formula given by Eq. (3).

Figure 4: A Wigner-Seitz primitive cell in 2D.
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