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0.1 Maxwell’s Velocity Distribution or the Maxwellian

We have already talked about the probability density function f(v⃗): the probability of finding a gas particle
with a velocity in the range [v⃗, v⃗ + dv⃗] is given by f(v⃗)dv⃗, we used it in deriving the expression for thermo-
dynamic pressure from a microscopic description of the gas using classical mechanics, but we did not need
explicit functional form for that. Therefore, it’s time we did that.

Derivation of Maxwellian using symmetries: we will try to derive f(v) using some general symmetry
principles:

• space is assumed to be isotropic, meaning: space looks the same in all directions (x, y, z), therefore,
the function f(v⃗ should not be direction-dependent, which means it should be a function of just |v⃗| = v
or equivalently of v2. Therefore, we can write down our f(v⃗) is some function of the magnitude of the
velocity, therefore, we can write down:

f(v⃗) = f(v) = g(v2) (1)

• Maxwell also assumed that the three components of the random velocity of any gas particle vx, vx, and
vx were also independent random variables. That means, simultaneously, those three components can
take any possible values, and in such a situation we know what the combined probability should look
like from the probability theory. It should be a product of the three individual independent probabilities,
therefore, we can write down the g(v2) of Eq. 1 in terms of some other function h as:

f(v⃗) = f(v) = g(v2) = h(v2x)× h(v2y)× h(v2z) (2)

=⇒ g(v2) = g(v2x + v2y + v2z) = h(v2x)× h(v2y)× h(v2z) (3)

Taking natural log on both sides:

ln g(v2x + v2y + v2z) = lnh(v2x) + lnh(v2y) + lnh(v2z) (4)

Let us rename the above logged functions:

ln g = Ψ

lnh = Φ (5)

Using these in Eq. 4, we get:

Ψ(v2) = Ψ(v2x + v2y + v2z) = Φ(v2x) + Φ(v2y) + Φ(v2z) (6)

Eq. 6 is only possible when the functions Ψ(X) and Φ(X) are both linear in X, that is, when they have
the forms:

Ψ(X) = aX + b

Φ(X) = − αX + β
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We intentionally chose a negative sign in the unknown α, but we are free to do so. Let us now re-write down
the Φ functions:

Φ(v2x) = −αv2x + β

Φ(v2y) = −αv2y + β

Φ(v2z) = −αv2z + β (7)

Using Eq. 7, we can re-write Eq. 6 as:

Ψ(v2) = (−αv2x + β) + (−αv2y + β) + (−αv2z + β)

= −α(v2x + v2y + v2z) + 3β

=⇒ Ψ(v2) = −αv2 + 3β (8)

Let us now revert to our original functions, that is h, g, and finally to f(v⃗), therefore, we use Eq. 8 in Eq. 5:

Ψ(v2) = ln g(v2)

= eΨ(v2)

= e−αv2+3β

= e−αv2

e3β

=⇒ g(v2) = Ce−αv2

= f(v) (9)

Where C = e3β . We have done it, we got the velocity distribution function, all we need is to find the
values of the two unknown constants α and C, the latter is easy, it can be evaluated using the normalization
condition that the total probability, that is the probability of a gas particle to have any possible value is
one, mathematically speaking: ∫ ∞

−∞
f(v) dvxdvydvz = 1 (10)

In polar co-ordinates with volume element v2 sin θdθdϕ it becomes:∫ π

0

sin θdθ

∫ π

−π

dϕ

∫ ∞

0

f(v) v2 dv = 1

=⇒ 4π

∫ ∞

0

f(v) v2 dv = 1

=⇒ 4π

∫ ∞

0

Ce−αv2

v2 dv = 1

=⇒ C =
(α
π

)3/2

(11)

Therefore, the Maxwellian now takes the form:

f(v⃗) = f(v) =
(π
α

)3/2

e−αv2

(12)

The only constant left to be known is α, and we can easily find its value if we could relate it to a macroscopic
quantity that we already know. Remember that we extracted the thermodynamic pressure applying classical
mechanics to the microscopic description of the classical ideal gas at moderate temperatures, the value of
which was:

P =
1

3
mN ⟨v2⟩ (13)

Where ⟨v2⟩ is the average of v2 over all N number of gas particles. Let us calculate the average of velocity
squared:
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⟨v2⟩ =

∫ ∞

0

v2f(v) v2dv sin θdθdϕ

= 4π
(α
π

)3/2
∫ ∞

0

v4e−αv2

dv

= 4π
(α
π

)3/2

× 3

8

π1/2

α5/2

=⇒ ⟨v2⟩ =
3

2α
(14)

Putting the value of ⟨v2⟩ in Eq. 13 we get:

P =
1

3
mN

3

2α
(15)

But we know that for an ideal gas:
PV = NkBT (16)

Where kB is Boltzmann’s gas constant and T is the absolute temperature of our ideal gas. Combining
Eq. 15 and 16, we obtain:

α =
m

2kBT
(17)

Substituting the above α in Eq. 9 we obtain our desired Maxwellia’s velocity distribution function or
the velocity probability density for a classical ideal gas in moderate (quantum and relativistic effects are
negligible) temperature.

f(v⃗) =
( m

2πkBT

)3/2

e−
1
2mv2/kBT (18)

Which is valid as long as our velocities obey v ≪ c, that is kBT ≪ mc2, the limiting temperature is about
104 K, but at this temperature even atoms will disintegrate, therefore our non-relativistic assumption is safe.
But we cannot have pressure too much higher than the atmospheric pressure, otherwise quantum correlations
among gas particles will start to dominate and our classical-mechanics-based result Eq. 18 won’t hold.

Note: the assumption of three velocity components to be independent random variables is due to Maxwell
himself. A more correct derivation will be through the use of Maxwell-Boltzmann statistics.

What is temperature? From theMaxwellian it is clear that kBT has the dimension of the kinetic energy,
or it the temperature is related to particle velocities. It is now very clear why temperature-equalization across
the gas volume is a requirement for equilibrium. Gas volumes of different temperatures brought in contact,
will proceed towards attaining the same temperature or microscopically speaking, gas particles will reach
a common Maxwellian velocity distribution through collisions and hence re-distribution of their individual
kinetic energies.

0.1.1 The speed probability density

Consider Eq. 18, let us write down the probability dΠ of finding a particle with velocity lying between v⃗
and v⃗ + dv⃗:

dΠ = f(v⃗)dvxdvydvz =
( m

2πkBT

)3/2

e−
1
2mv2/kBT v2 sin θ dθ dϕ (19)

If we integrate out the angular co-ordinates θ and ϕ over the full solid angle 4π, we will be left with just
the radial or the speed probability dΠspeed, that is the probability of finding a particle with a speed between
v and v + dv, which is given by:

dΠspeed = 4πv2f(v)dv = v2
( m

2πkBT

)3/2

e−
1
2mv2/kBT dv (20)

3



TI
HU

PH
YS
IC
S

Therefore the speed probability density is given by:

fspeed(v) = 4πv2f(v) = 4π v2
( m

2πkBT

)3/2

e−
1
2mv2/kBT (21)

Figure 1: Graphical representation of the Maxwellian speed probability distribution.

Most probable speed: optimizing fspeed(v) in Eq. 20 will give us the most probable speed (or magnitude
of velocity or casually just velocity), that is the speed that most particles are likely to have. Taking derivative
of fspeed(v) w.r.t v

2 in Eq. 21 and using the form of f(v) in terms of C and α instead of their actual values,
and applying the optimization condition, we get:

dfspeed(v)

dv2
= Ce−αv2

[1− αv2] = 1

vmax =
1√
α

=

√
2kBT

m
(22)

Therefore the most probable speed is vm =
√

2kBT/m .
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Average or Mean Velocity (actually the magnitude of velocity) or the speed What we really
mean is the average of speed or the average of the magnitude of velocity, because the average velocity
should of course be zero, to understand why so, let us look at the definition of the average. The probability of
finding a gas particle with velocity lying between v⃗ and v⃗+dv⃗ is given by dP (v⃗) = f(v⃗)dvxdvydvz, therefore,
the average of any function of v⃗, let’s say χ(v⃗) will be given by:

⟨χ(v⃗)⟩ =
∫

f(v⃗)dvxdvydvz χ(v⃗) (23)

In our case, we are going to calculate the average of the velocity, that is χ(v⃗) = v⃗ = vxî + vy ĵ + vz k̂,
therefore < v⃗ > will be:

⟨v⃗⟩ =
∫

f(v⃗)dvxdvydvz v⃗ (24)

But, f(v⃗) = f(v), which means it’s direction-independent, but v⃗ is a directional vector, so taking its
average over all directions is like looking at it from all angles and summing all those views, therefore,
obviously the total will be zero! An one-dimensional analogy will be the vanishing of the integration of an
odd function, e.g. ∫ a

−a
f(x) = 0, if f(x) = odd

In Eq. 24, everything is even (direction-independent or scalar function of |v⃗| = v) except v⃗, which makes
the integral an integration of an odd function ! Now that this is clear, let us proceed to calculate the
average of |v⃗| = v, which is not a vector, and we can therefore, use the speed probability density fspeed(v) of
Eq. 22:

⟨v⟩ =

∫ ∞

0

fspeeddvv

=

∫ ∞

0

4π
[
v2C e−αv2

dv
]
v

= 4πC

∫ ∞

0

v3e−αv2

dv

(25)

Where, C = (m/2πkBT )
3/2 and α = m/2kBT . Above integration is easy if we use Feynman’s trick! Let

us name the integral IF , and try to write it in a different way:

IF =

∫ ∞

0

v3e−αv2

dv

=

∫ ∞

0

v
[
− d

dα

(
e−αv2

)]
dv (26)

So far so good, now if we could pull out the derivative w.r.t α, we would be good, then we would be left
with just the integration of vExp[−αv2], can we do that? Well, the v sitting just on the left of −d/dα is
not a function of α, neither is dv so in principle, yes, we could pull out the derivative outside, but there’s
a catch! We can do this without making the mathematicians angry if we knew that the integral converges,
meaning integration of v3Exp[−αv2] is finite and we know for sure it is, because for a positive α, which we
know it is because its value is m/2kBT , integration of vnExp[−αv2] for any finite n, because doesn’t matter
how big vn is an exponential is always going to kill it! Therefore, yes, we can take the −d/dα outside the
integral, therefore, Eq. 26 becomes:

5



TI
HU

PH
YS
IC
S

IF = − d

dα

∫ ∞

0

ve−αv2

dv

= − d

dα

∫ ∞

0

e−αv2 1

2
d(v2)

= −1

2

d

dα

∫ ∞

0

e−αv2

d(v2)

= −1

2

d

dα

[e−αv2

−α

]∞
0

= −1

2

d

dα

[ 1
α

]
IF =

1

2α2
(27)

Substituting the value of IF (Eq. 27) in Eq. 25, we get:

⟨v⟩ = 4πC IF

= 4π
C

2α2

= 4π
( m

2πkBT

)3/2 1

2

( m

2kBT

)2

⟨v⟩ = v̄ =

√
8kBT

πm
(28)

Therefore, the mean/average speed is
√
8kBT/πm ≃ 1.59

√
kBT/m.

Root mean square (r.m.s) speed (vrms) This is defined as the square-root of the mean/average of the
square speed, that is ⟨v2⟩. So if we use our definition of average given in Eq. 23, we need to put χ(v⃗) = v2,
then in the end take a square root of the result, that is:

vrms =
√
⟨v2⟩ =

√∫ ∞

0

fspeed(v) dv v2

=

√∫ ∞

0

4π
[
v2C e−αv2 dv

]
v2

=
√
4πC

√∫ ∞

0

v4e−αv2 dv (29)
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Here again we can use the Feynman’s trick by taking −d/dα twice:

vrms =
√
4πC

√
(−1)2

d

d2α2

∫ ∞

0

e−αv2 dv

=
√
4πC

√
d2

dα2

1

2

√
π

α

=
√
4πC

√√
π

2

d2

dα2
α−1/2

=
√
2
( m

2πkBT

3/4
π
)3/4

√
3

4
α−5/4

=
√
2
( m

2πkBT

3/4
π
)3/4

√
3

4

( m

2kBT

)−5/4

=

√
3kBT

m
(30)

We have used the value of an integral that is too common in physics:∫ ∞

0

e−x2

dx =

√
π

2
(31)

Evaluation of this integral is again easy though, I am giving it in an end note. Therefore, the root mean
square speed is vrms =

√
3kBT/m.

End note: evaluation of the Gaussian integral

IG =

∫ ∞

0

e−x2

dx =
1

2

∫ ∞

−∞
e−x2

dx (32)

Let us calculate the square of this integral first and then we will take a positive square root. So,

I2G =
1

4

[ ∫ ∞

−∞
e−a2

da
][ ∫ ∞

−∞
e−b2db

]
=

1

4

∫ ∞

−∞

∫ ∞

−∞
e−(a2+b2) da db (33)

But this is just an integral in a Cartesian co-ordinates with axes a and b, we could convert it into a polar
integral by da db → r dr dθ, where r2 = a2 + b2, the radius. Therefore, the above integral just becomes:

I2G =
1

4

∫ ∞

0

∫ 2π

0

e−r2 r dr dθ

=
1

4
2π

∫ ∞

0

e−r2 d(r2/2)

=
1

4
2π

1

2

[e−r2

−1

]∞
0

=
π

4

=⇒ IG =

√
π

2
(34)
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